A NEW ALDEHYDE SYNTHESIS

Sir:

We have found that the Wittig olefin synthesis¹ can be extended to the synthesis of certain aldehydes by way of their enol ethers:

 $(C_6H_5)_3P + CICH_2OCH_3 \longrightarrow [(C_6H_5)_3PCH_2OCH_3] + CI - I$

$$\begin{array}{c}
I \xrightarrow{C_6H_6Li} (C_6H_6)_8P = CHOCH_8 \\
II \\
\downarrow & II \\
-C=0 \xrightarrow{} -C=CHOCH_8 \xrightarrow{H_8O\oplus} -CHCHO
\end{array}$$

Triphenyl-(methoxymethyl)-phosphonium chloride (I) (m.p. 191–193°; Calcd for $C_{20}H_{20}ClOP$: Cl, 10.34. Found: Cl, 10.24) from triphenyl-phosphine and chloromethyl methyl ether, was finely powdered, suspended in anhydrous ether, and stirred under a nitrogen atmosphere while one equivalent of ethereal phenyl lithium was gradually added. The resulting deep red solution, presumably containing methoxymethylenetriphenylphosphorane (II) in two-fold excess, reacted with 5α , 22β , 25D-spirostan-3-one² (tigogenone), yielding 85% of 3-methoxymethylene- 5α , 22β , 25D-spirostane (III) (m.p. 178–181°, $[\alpha]^{23}D$ —65.8°, $\overline{\nu}_{max}$. 1683 cm. -1. Calcd. for $C_{29}H_{46}O_3$: C, 78.68; H, 10.47. Found: C, 78.90; H, 10.37). Brief treatment of this enol ether with diethyl ether, previously saturated with 72% perchloric acid, resulted in nearly quantitative hydrolysis to 5α , 22β , 25D-spirostane-3-carboxaldehyde (IV), as a mixture of epimers (m.p. 160–170°, $[\alpha]^{23}D$ —57.4°, $\overline{\nu}_{max}$.

(1) For leading references, see G. Wittig, Angew. Chemie, 68, 505 (1956).

(2) R. W. Marker, T. Tsukamoto and D. L. Turner, THIS JOURNAL, 62, 2525 (1940).

2693, 1731 cm.⁻¹. Calcd. for C₂₈H₄₄O₃: C, 78.45; H, 10.34. Found: C, 78.59; H, 10.45).

This reaction sequence, when applied to the synthesis of the expected aldehydes from cyclohexanone and from acetophenone using a 100% excess of the reagent (II), resulted in incomplete reaction and lower over-all yields. Thus, from cyclohexanone, was obtained cyclohexanecarboxaldehyde 2,4-dinitrophenylhydrazone (40%), m.p. 172–173° alone or admixed with an authentic sample.³ Acetophenone was converted in similar over-all yield to hydratropaldehyde semicarbazone, m.p. 150–151° (lit.,⁴ 153–154°), which was further identified by direct conversion to the 2,4-dinitrophenylhydrazone, m.p. 134–135° (lit.,⁴ 135°).

The above synthetic method for the transforma-

tion —C=O → —CHCHO promises to offer certain advantages over the established glycidic ester sequence⁵: (1) milder reaction conditions; (2) avoidance of certain side reactions⁶; (3) possible utility of the enol ether intermediate as a "protected" aldehyde group or (4) as a starting substance for alternative transformations.

(3) Kindly furnished by Prof. W. S. Johnson.

(4) C. F. H. Allen and J. van Allan, Organic Syntheses, 24, 87 (1944).

(5) Houben-Weil, "Methoden der Organischen Chemie," Vol. VII, part 1, Georg Thieme Verlag, Stuttgart, 1954, p. 326.

(6) W. S. Johnson, J. S. Belew, L. J. Chinn and R. H. Hunt, THIS JOURNAL, **75**, 4995 (1953).

United States Department of Agriculture
Agricultural Research Service
Eastern Utilization Research
And Development Division
Philadelphia 18, Pennsylvania

RECEIVED OCTOBER 22, 1958